‘Sol artificial’ de Corea del Sur sueña con hacer realidad la fusión nuclear

KSTAR, el dispositivo de investigación de fusión nuclear de Corea del Sur continúa batiendo sus propios récords y dando pasos para hacer realidad un nuevo tipo de generación eléctrica que ayude a solventar los desafíos medioambientales y energéticos del mundo.

El hito de Corea del Sur logrado a final del año pasado resulta difícil de comprender para alguien que no esté familiarizado con la fusión nuclear: el enorme aparato mantuvo activo un flujo de plasma con los iones a una temperatura de 100 millones de grados centígrados durante 30 segundos.

Pero se entiende mejor si se explica que esta temperatura es la que se requiere para replicar en la tierra lo que sucede dentro de las estrellas.

Ese tipo de condiciones extremas es básicamente lo que KSTAR, que puede definirse como un “sol artificial”, trata de ir recreando de cara a que en el futuro el programa multinacional ITER pueda ejecutar el mismo proceso por el cual el sol produce y libera ingentes cantidades de energía.

Además de Corea del Sur, ITER, que será un “sol artificial” más complejo y 27 veces más grande en capacidad de fusión nuclear que KSTAR cuando se termine su construcción en el sur de Francia, está integrado por la Unión Europea, China, Estados Unidos, Rusia, India, Japón, Suiza y Reino Unido y comenzará operaciones en 2025.

El camino hacia la fusión nuclear

“La energía de fusión es más que un sueño”, explicó Yoo Suk-jae, presidente del Instituto de Energía de Fusión de Corea (KFE), responsable de KSTAR, en un encuentro con periodistas extranjeros celebrado esta semana en su sede de Daejeon, a 130 kilómetros al sur de Seúl.

“El momento crucial puede llegar en 2035, cuando ITER podría comenzar a generar fusión de manera autosuficiente”, añadió Yoo, al repasar el calendario que maneja el sector y que contempla, de tener éxito ITER, la posibilidad de que un reactor de fusión pueda generar electricidad para 2050.

Lo que buscan KSTAR, y por extensión ITER, es que ese posible futuro reactor pueda, mediante un sistema de confinamiento magnético, mantener en estado de plasma dos isótopos del hidrógeno, el deuterio y el tritio, para que sus núcleos puedan fusionarse.

Si esta tecnología se hace realidad, un gramo de deuterio y tritio será capaz de generar el equivalente de lo que produce una decena de toneladas de carbón.

Clave para ‘mix’ energético

Yoon Si-woo, vicedirector general del Centro de Investigación KSTAR, cree que la fusión “puede ser un elemento importante en el ‘mix’ energético del futuro”.

La fusión no emite gases a la atmósfera, los residuos radiactivos que genera son ínfimos en comparación con las plantas de fisión nuclear actuales y, como señala Yoon, “el combustible (deuterio y tritio) abunda en el agua marina”.

Pero para hacer realidad este tipo de energía es fundamental, además de la creación de un circuito de combustible autosuficiente que regenere y recicle el tritio, la estabilización del plasma en la que trabaja KSTAR.

La máquina está alojada en el edificio central del complejo en Daejeon y su cuerpo principal, que contiene los imanes superconductores y la cámara de vacío anular de plasma, mide casi 9 metros de alto y casi 9 de ancho.

Yoon va detallando sus diversos componentes y subraya desafíos como el hecho de que dentro del aparato tengan que funcionar al mismo tiempo los imanes, que tienen que estar “muy muy fríos” para que haya superconductividad, y la cámara de plasma, que debe estar “muy muy caliente”.

“Separados por solo tres o cuatro metros hay una parte que tiene que estar a unos 4 grados kelvin (unos 270 grados centígrados bajo cero) y otra que tiene que superar el millón de grados centígrados”, desgrana.

Fuentes:

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *